| Name                                  | Class | Date |
|---------------------------------------|-------|------|
| · · · · · · · · · · · · · · · · · · · | C1000 | Date |

## Chapter 21 Climate

**Exploration Lab** 

# **Human Impact on Climate and Weather**

Scientists are now closely monitoring how daily human activity is changing microclimates. There is concern that changing microclimates can have an effect on global climates. In this investigation, you will explore some of the ways that human activities are changing the atmosphere.

**Problem** How do we know that human activity is changing Earth's climates?

### **Materials**

- paper
- pen or pencil

**Skills** Calculating, Measuring, Using Tables, Analyzing Data

### **Procedure**

1. Data Table 1 lists many of the types, sources, and amounts of primary pollutants. Use this table to answer Questions 1, 2, 3, and 4 under Analyze and Conclude.

DATA TABLE 1 Estimated Nationwide Emissions (millions of metric tons/year)

| Source                            | Carbon<br>Monoxide | Partic-<br>ulates | Sulfur<br>Oxides | Volatile<br>Organics | Nitrogen<br>Oxides | Total |
|-----------------------------------|--------------------|-------------------|------------------|----------------------|--------------------|-------|
| Transportation                    | 43.5               | 1.6               | 1.0              | 5.1                  | 7.3                | 58.5  |
| Stationary source fuel combustion | 4.7                | 1.9               | 16.6             | 0.7                  | 10.6               | 34.5  |
| Industrial processes              | 4.7                | 2.6               | 3.2              | 7.9                  | 0.6                | 19.0  |
| Solid waste disposal              | 2.1                | 0.3               | 0.0              | 0.7                  | 0.1                | 3.2   |
| Miscellaneous                     | 7.2                | 1.2               | 0.0              | 2.8                  | 0.2                | 11.4  |
| Total                             | 62.2               | 7.6               | 20.8             | 17.2                 | 18.8               | 126.6 |

Source: U.S. Environmental Protection Agency

**2.** Look at Figure A. The pollutants listed are linked to a wide variety of negative health effects such as eye irritation, heart damage, and lung damage. The pollutants shown are also linked to reduced visibility, reduced crop yields, and damage to ecosystems. Study the figure and answer Questions 5, 6, and 7.

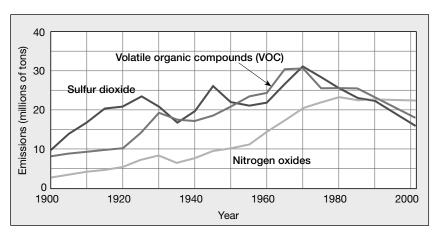



Figure A

**3.** Look at Figure B. Scientists have noted the increasing levels of carbon dioxide in the atmosphere. Research continues to determine whether these increasing levels are affecting global climates. Use Figure B to answer Question 8.

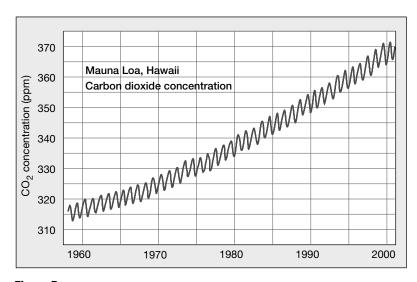



Figure B

4. Look at Data Table 2. This table presents data on the effects of large cities on their surrounding microclimates. Summer temperatures in cities can be higher than the surrounding countryside. Meteorologists call this effect "the urban heat island." Study the data in the table and answer Questions 9, 10, and 11.

## **Analyze and Conclude**

- 1. Interpreting Data What is the leading source (by weight) of primary pollutants? How many metric tons of this pollutant are added to the atmosphere each year?
- **2. Interpreting Data** Which of the following is the most abundant primary pollutant?
  - a. carbon monoxide
  - **b.** sulfur oxides
- **3. Calculating** Your answer for item 2 is what percentage of all primary pollutants?
  - **a.** 25%
- **b.** 50%
- **c.** 75%

#### DATA TABLE 2 Average Climatic Changes Produced by Cities

| Frouded by Gilles      |                                      |  |  |  |  |
|------------------------|--------------------------------------|--|--|--|--|
| Element                | Comparison with Rural<br>Temperature |  |  |  |  |
| Particulate matter     | 10 times more                        |  |  |  |  |
| Temperature            |                                      |  |  |  |  |
| Annual mean            | 0.5-1.5°C higher                     |  |  |  |  |
| Winter                 | 1–2°C higher                         |  |  |  |  |
| Solar radiation        | 15–30% less                          |  |  |  |  |
| Ultraviolet, winter    | 30% less                             |  |  |  |  |
| Ultraviolet, summer    | 5% less                              |  |  |  |  |
| Precipitation          | 5–15% more                           |  |  |  |  |
| Thunderstorm frequency | 16% more                             |  |  |  |  |
| Winter                 | 5% more                              |  |  |  |  |
| Summer                 | 29% more                             |  |  |  |  |
| Relative humidity      | 6% lower                             |  |  |  |  |
| Winter                 | 2% lower                             |  |  |  |  |
| Summer                 | 8% lower                             |  |  |  |  |
| Cloudiness (frequency) | 5–10% more                           |  |  |  |  |
| Fog (frequency)        | 60% more                             |  |  |  |  |
| Winter                 | 100% more                            |  |  |  |  |
| Summer                 | 30% more                             |  |  |  |  |
| Wind speed             | 25% lower                            |  |  |  |  |
| Calms                  | 5–20% more                           |  |  |  |  |

Source: After Landsberg, Changnon, and others

- **4. Calculating** What is the approximate total weight (in million metric tons) of all primary pollutants added to the atmosphere?
- **5. Interpreting Data** Describe the trend you see in the data for atmospheric pollutants prior to 1970.
- **6. Interpreting Data** Describe the trend you see in the data for atmospheric pollutants since 1970.

| _                                                       |
|---------------------------------------------------------|
| 0                                                       |
| Pearson                                                 |
| Pearson Education, Inc.                                 |
|                                                         |
| Þ                                                       |
| Jblishing                                               |
| SD                                                      |
| publishing as Pearson Prentice Hall. All rights reserve |
| earson Prentice Ha                                      |
| Hall. /                                                 |
| $\triangleq$                                            |
| rights                                                  |
| reserve                                                 |

| lar         | ne Date                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------|
| 7.          | <b>Inferring</b> Suggest a reason for the changing trends in Questions 5 and 6.                                            |
|             |                                                                                                                            |
| 8.          | Calculating What has been the approximate percentage increase in atmospheric carbon dioxide near Mauna Loa since 1958?     |
| 9.          | Interpreting Data Compared to rural areas, which factors are increased by urbanization? Which factors are decreased?       |
| l <b>0.</b> | Interpreting Data Of all of the factors shown, which shows the greatest increase due to urbanization?                      |
|             |                                                                                                                            |
| 11.         | <b>Predicting</b> Suggest a possible reason for each of the following effects on the weather that is influenced by a city. |
|             | a. increased frequency of thunderstorms                                                                                    |
|             | b. lower wind speed                                                                                                        |
|             | c. increased precipitation                                                                                                 |
|             |                                                                                                                            |
|             |                                                                                                                            |
|             |                                                                                                                            |
|             |                                                                                                                            |
|             |                                                                                                                            |