\qquad
Pd. \qquad

Absolute Dating Practice

1. What percentage of a radioactive element will be left after:
a. 1 half-life \qquad b. 2 half-lives \qquad c. 3 half-lives \qquad
2. How many half-lives have passed for each of the following samples:
a. 50% of the original radioactive material remains
b. 25% of the original radioactive sample remains \qquad
c. 12.5% of the original radioactive sample remains
3. If a rock sample originally contained 12 g of Uranium-235, how much will be left after:
a. 1 half-life \qquad b. 2 half-lives \qquad c. 3 half-lives \qquad
4. Uranium- 235 has a half-life of 700 million years. How much of the 12 g sample of Uranium235 will be left after :
a. 700 million years \qquad b. 1400 million years
\qquad
5. Carbon-14 is a radioactive element that decays into Carbon-12. The half-life of Carbon-14 is 5700 years. What percentage of Carbon-14 and Carbon-12 will be left in a dinosaur bone after:

5700 years: \% of Carbon-14 \qquad \% of Carbon-12 \qquad
11,400 years: \% of Carbon-14 \qquad \% of Carbon-12 \qquad
17,100 years: $\%$ of Carbon-14 \qquad \% of Carbon-12 \qquad
6. If the dinosaur bone in question 5 originally had 16 grams of Carbon-14 in it how much of each type of Carbon should be left after:

5700 years: Grams of Carbon-14__ Grams of Carbon-12 ___
11,400 years: Grams of Carbon-14 \qquad Grams of Carbon-12 \qquad

17,100 years: Grams of Carbon-14 \qquad Grams of Carbon-12 \qquad
7. More dinosaur bones are found and examined. If they contain the following percentages of Carbon-14 and Carbon-12 how old are each of the bones?

Bone \#1: 50\% Carbon-14 and 50\% Carbon-12 \qquad
Bone \#2: 25\% Carbon-14 and 75\% Carbon-12
\qquad years old

Bone \#3: 12.5% Carbon-14 and 87.5\% Carbon-12 \qquad
8. Scientists have recently discovered a new type of radioactive element. They have measured its half-life and know it takes 10,000 years to decay. Use their data in the table below to plot a line on the graph below.

100\% -				
			3	
			4	
\% $50 \%-$				
R				
E25%				
A				
$\begin{array}{lr} \mathrm{I} \\ \mathrm{~N} & 12.5 \% \\ \hline \end{array}$				
I				
$\mathrm{N}_{6.25 \%}$				
0	1		,	7
0	1	2	3	4

9. A fossil bone has 25% of this new radioactive element remaining. How many half-lives have passed?
10. If the half-life of this new element is 10,000 years, how old is the fossil bone in question 9 ?

11. Label the graph above to indicate where each half-life occurs.
12. How much of the sample is remaining after the third half-life?
13. What percentage of sample is remaining after the first half life?
14. What percentage of sample is remaining after the second half life?
